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Introduction

®" Primary Goal

= Improve software quality as expressed by a metrics suite using automated refactoring

® Approach

= Consider OO design improvement as a combinatorial optimization problem
= Use search-based refactoring to direct the refactoring process

" Code-Imp
= Combinatorial Optimisation for Design Improvement
= Refactors automatically Java source code based on a metrics suite
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Key results in previous work: Is automated improvement possible?

® Can search-based refactoring improve program design?

= QMOOD metrics suite was used as fitness function
= Understandability
= Flexibility
= Reusability

" Results:
= Significant improvement in Understandability

= Minimal improvement in Flexibility

= Reusability function proved unsuitable
= Resulted a large number of featureless classes
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Key results in previous work : Which search technique works best?

®" Which search technique is more effective?
= Multiple-ascent hill-climbing
= Genetic algorithm
= Simulated annealing

® Results:

* Multiple-ascent hill-climbing performed the best overall
= Performed surface, rather than radical, design exploration

= Single best design improvement was achieved using simulated annealing
= |llustrates that more radical design improvement is probably possible
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Motivations
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Motivation for Multi-level Refactoring

" Drawbacks of Source-to-Source transformation

= All low-level code details must be handled

= Refactoring steps too small to effect major design change

" Both happen because of detailed information at source-code level

® Design-level refactoring can be used for a deeper and faster design exploration
" However, code refactoring needs to be applied manually

® Cannot be used in an Agile context

Motivation 1:
Perfoming a radical and faster design exploration rather than minor improvements
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Motivation for Multi-level Refactoring

® Using a fully automated refactoring tool

= |tis possible to apply many refactorings without programmer intervention

= Programmer only sees the end result of the refactoring process

" Difficulties in preserving programmer understandability

Motivation 2:
Improve User Understandability of the refactored program
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Proposed Approach
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Multi-level Automated Refactoring
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Research Questions
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How to guide the search process efficiently ?

" The code refactoring process is informed by
= The metrics suite
= The user-selected design
= The series of transformations that led to this program design

®" How this combination is best used to guide the search is an
open question

¥ What is the best trade-off when the series of transformations
applied to the design

= Degrade the quality of the source code?
= Cannot be mapped easily to the existing source code?
= Cannot be executed because of failing pre-conditions?
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How to select suitable metrics?

® How metrics including in metrics suite should be selected?
=  Off-the-shelf metrics suite (e.g. QMOOD, MOQD, etc.)
= Tailored one

" Arecent experiment we performed to explore the metrics
relationship

= Five cohesion metrics were compared
= LSCC, TCC, SCOM, CC, and LCOMS5

= Some of the metrics were strongly in conflict with each other
= E.g. LSCCand TCC

® |s the same metrics suite appropriate for both levels?

SSBSE 2011 13




A Preliminary Experiment
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A preliminary experiment

®" How precisely can a source program be refactored based on a
desired design?

" Implemented Algorithm
= A well-designed software system (JHotDraw) is randomly refactored
= Two designs are compared using a design differencing tool (UMLDiff)

=  Applied changes are categorized as refactoring instances

= Rebuild the original system based on the recovered refactorings

= The initial program design is the desired design
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Categorize detected changes as refactoring instances

Java Source Code

I
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| [Extracts two UMI class model from
I two versions of the program.

Extracted Models
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Getthe refactored code ? |1, jdentifies applied changes. N y

Detected Changes

Refactoring Extractor

[dentifies instances of applied refactorings
using a suite of predefined queries.

Detected Refactorings
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Rebuild the original system based on the recovered refactorings
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Conclusion

®" The presentation covered:

" The problem with current code improvement tools

= Perform surface, rather than radical, design exploration
= Difficulties in preserving user understandability

® Multi-level Automated Refactoring using Design Exploration
= Expand refactoring approach to perform radical, instead of surface, design exploration
= Address the problem of comprehension of the refactored program

" Progress to date
= An automated search-based refactoring tool called Code-Imp
= A preliminary experiment that shows the capability and the potential of the approach
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Thank You!
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How to explain the new design?

® Highlight design key points
® Structure
® History

® Reduce complexity using software visualization
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Code-Imp Architecture
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Design-level Refactorings

" Implemented Refactorings:

= Method-level Refactorings
*  Push Down Method
=  Pull Up Method
= Decrease/Increase Method Visibility

= Field-level Refactorings

=  Push Down Field
=  Pull Up Field
= Decrease/Increase Field Visibility

= (Class-level Refactorings

= Extract Hierarchy

= Collapse Hierarchy

=  Make Superclass Abstract

=  Make Superclass Concrete

= Replace Delegation with Inheritance
= Replace Inheritance with Delegation
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Implemented Metrics

SSBSE 2011

No. Cohesion Metrics ACTONY 1T
1 |Low-level Similarity Class Cohesion|LSCC
2 | Similarity Class Cohesion SCC
3 |Normahzed Hamming Distance NHD
4 |Tight Class Cohesion TCC
5 |Loose Class Cohesion LCC
6 |Lack of Cohesion in Methodsl LCOM!1
7 |Lack of Cohesion in Methods2 LCOM2
8, 9| Lack of Cohesion in Methods3 & 4 |LCOMS3 & 4
10 |Lack of Cohesion in Methodsh LCOMS5
11 |Information-Flow-Based Cohesion |ICH
12 |Cohesion Among Method of Class |CAMC
13 | Class Cohesion CC
14 |Sensitive Class Cohesion Metrics SCOM
Coupling Metrics
15 |Response for Class RFC
16 |Direct Class Coupling DCC
17 |Data Abstraction Coupling DAC
18 |Coupling Factor COF
19 |Coupling Between Objects CBO
20 |Instability Instability
21 |Information-Flow-Based Coupling |ICP
22 |Non-Inheritance ICP NICP
23 |Inheritance ICP [ICP
24 | Message Passing Coupling MPC
Other Metrics
25 |Class Interface Size CISs
26 |Number of Methods NOM
27 |Data Access Metric DAM
28 |Design Size in Classes DSC
29 |Number of Polymorphic Methods |NOP
30 [Average Number of Ancestors ANA
31 [Number Of Hierarchies NOH
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