
 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

1

 Multi-level Automated Refactoring Using Design Exploration

Iman Hemati Moghadam

Supervisor: Mel Ó Cinnéide

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

2

Agenda

 Introduction

 Motivations for a Multi-level Refactoring Approach

 Proposed Approach in Detail

 Research Questions

 Key Results to Date

 Conclusion

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

3

Introduction

 Primary Goal

 Improve software quality as expressed by a metrics suite using automated refactoring

 Approach
 Consider OO design improvement as a combinatorial optimization problem

 Use search-based refactoring to direct the refactoring process

 Code-Imp
 Combinatorial Optimisation for Design Improvement

 Refactors automatically Java source code based on a metrics suite

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

4

 Key results in previous work: Is automated improvement possible?

 Can search-based refactoring improve program design?

 QMOOD metrics suite was used as fitness function
 Understandability

 Flexibility

 Reusability

 Results:
 Significant improvement in Understandability

 Minimal improvement in Flexibility

 Reusability function proved unsuitable
 Resulted a large number of featureless classes

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

5

 Key results in previous work : Which search technique works best?

 Which search technique is more effective?

 Multiple-ascent hill-climbing

 Genetic algorithm

 Simulated annealing

 Results:
 Multiple-ascent hill-climbing performed the best overall

 Performed surface, rather than radical, design exploration

 Single best design improvement was achieved using simulated annealing

 Illustrates that more radical design improvement is probably possible

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

6

Motivations

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

7

Motivation for Multi-level Refactoring

 Drawbacks of Source-to-Source transformation

 All low-level code details must be handled

 Refactoring steps too small to effect major design change

 Both happen because of detailed information at source-code level

 Design-level refactoring can be used for a deeper and faster design exploration

 However, code refactoring needs to be applied manually

 Cannot be used in an Agile context

Motivation 1:
Perfoming a radical and faster design exploration rather than minor improvements

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

8

Motivation for Multi-level Refactoring

 Using a fully automated refactoring tool

 It is possible to apply many refactorings without programmer intervention

 Programmer only sees the end result of the refactoring process

 Difficulties in preserving programmer understandability

Motivation 2:

Improve User Understandability of the refactored program

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

9

Proposed Approach

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

10

 Multi-level Automated Refactoring

2

3

1

10

 Multi-level Automated Refactoring

1

Design

Exploration

Full

Refactoring

2

3

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

11

Research Questions

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

12

How to guide the search process efficiently ?

 The code refactoring process is informed by

 The metrics suite

 The user-selected design

 The series of transformations that led to this program design

 How this combination is best used to guide the search is an
open question

What is the best trade-off when the series of transformations

applied to the design
 Degrade the quality of the source code?

 Cannot be mapped easily to the existing source code?

 Cannot be executed because of failing pre-conditions?

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

13

How to select suitable metrics?

 How metrics including in metrics suite should be selected?

 Off-the-shelf metrics suite (e.g. QMOOD, MOOD, etc.)

 Tailored one

 A recent experiment we performed to explore the metrics
relationship

 Five cohesion metrics were compared
 LSCC, TCC, SCOM, CC, and LCOM5

 Some of the metrics were strongly in conflict with each other
 E.g. LSCC and TCC

 Is the same metrics suite appropriate for both levels?

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

14

A Preliminary Experiment

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

15

A preliminary experiment

 How precisely can a source program be refactored based on a
desired design?

 Implemented Algorithm

 A well-designed software system (JHotDraw) is randomly refactored

 Two designs are compared using a design differencing tool (UMLDiff)
 Applied changes are categorized as refactoring instances

 Rebuild the original system based on the recovered refactorings
 The initial program design is the desired design

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

16

Categorize detected changes as refactoring instances

JDEvAn

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

17

Rebuild the original system based on the recovered refactorings

Code-Imp

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

18

Conclusion

 The problem with current code improvement tools
 Perform surface, rather than radical, design exploration
 Difficulties in preserving user understandability

 Multi-level Automated Refactoring using Design Exploration
 Expand refactoring approach to perform radical, instead of surface, design exploration

 Address the problem of comprehension of the refactored program

 Progress to date
 An automated search-based refactoring tool called Code-Imp

 A preliminary experiment that shows the capability and the potential of the approach

 The presentation covered:

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

19

Thank You!

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

20

How to explain the new design?

 Reduce complexity using software visualization

 Highlight design key points
 Structure

 History

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

21

Code-Imp Architecture

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

22

 Design-level Refactorings

 Implemented Refactorings:

 Method-level Refactorings
 Push Down Method

 Pull Up Method

 Decrease/Increase Method Visibility

 Field-level Refactorings
 Push Down Field

 Pull Up Field

 Decrease/Increase Field Visibility

 Class-level Refactorings
 Extract Hierarchy

 Collapse Hierarchy

 Make Superclass Abstract

 Make Superclass Concrete

 Replace Delegation with Inheritance

 Replace Inheritance with Delegation

 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE

23

Implemented Metrics

