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Introduction 
 
 Primary Goal 

 Improve software quality as expressed by a metrics suite using automated refactoring 

 

 

 

 

  

 

 

 

 

 
 

 Approach 
 Consider OO design improvement as a combinatorial optimization problem 

 Use search-based refactoring to direct the refactoring process 

 Code-Imp 
 Combinatorial Optimisation for Design Improvement 

 Refactors automatically Java source code based on a metrics suite 
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 Key results in previous work: Is automated improvement possible?  

 
 Can search-based refactoring improve program design?  

 QMOOD metrics suite was used as fitness function 
 Understandability 

 Flexibility 

 Reusability 

  Results: 
 Significant improvement in Understandability 

 Minimal improvement in Flexibility 

 Reusability function proved unsuitable  
 Resulted a large number of featureless classes  
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 Key results in previous work : Which search technique works best?  

 Which search technique is more effective? 

 Multiple-ascent hill-climbing 

 Genetic algorithm 

 Simulated annealing 

 Results: 
 Multiple-ascent hill-climbing performed the best overall 

 Performed surface, rather than radical, design exploration 

  
 Single best design improvement was achieved using simulated annealing 

 Illustrates that more radical design improvement is probably possible 



 THE IRISH SOFTWARE ENGINEERING RESEARCH CENTRE 

6 

 
 

 

 

Motivations 
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Motivation for Multi-level Refactoring 
 
 Drawbacks of Source-to-Source transformation 

 All low-level code details must be handled  

 Refactoring steps too small to effect major design change 

 

 Both happen because of detailed information at source-code level 

 
 Design-level refactoring can be used for a deeper and faster design exploration 

  However, code refactoring needs to be applied manually 

 Cannot be used in an Agile context 

Motivation 1:  
Perfoming a radical and faster design exploration rather than minor improvements 
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Motivation for Multi-level Refactoring 
 

  

  

 

 

 
 

 

 Using a fully automated refactoring tool  

 It is possible to apply many refactorings without programmer intervention 

 Programmer only sees the end result of the refactoring process 

 

 Difficulties in preserving programmer understandability  
 

 

Motivation 2:  

Improve User Understandability of the refactored program 
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Proposed Approach 
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Research Questions 
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How to guide the search process efficiently ? 
 
 The code refactoring process is informed by  

 The metrics suite 

 The user-selected design 

 The series of transformations that led to this program design 

 How this combination is best used to guide the search is an 
open question 

 
What is the best trade-off when the series of transformations 

applied to the design  
 Degrade the quality of the source code?  

 Cannot be mapped easily to the existing source code? 

 Cannot be executed because of failing pre-conditions? 
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How to select suitable metrics? 

 How metrics including in metrics suite should be selected?  

  Off-the-shelf  metrics suite  (e.g. QMOOD, MOOD, etc.) 

  Tailored one 

 

 A recent experiment we performed to explore the metrics 
relationship 

 Five cohesion metrics were compared 
 LSCC, TCC, SCOM, CC, and LCOM5 

 Some of the metrics were strongly in conflict with each other 
 E.g. LSCC and TCC 

 

 Is the same metrics suite appropriate for both levels? 
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A Preliminary Experiment 
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A preliminary experiment 

 How precisely can a source program be refactored based on a 
desired design? 

 

 Implemented Algorithm 

 A well-designed software system (JHotDraw) is randomly refactored 

 Two designs are compared using a design differencing tool (UMLDiff) 
 Applied changes are categorized as refactoring instances 

   Rebuild the original system based on the recovered refactorings  
 The initial program design is the desired design 
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Categorize detected changes as refactoring instances 

JDEvAn 
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Rebuild the original system based on the recovered refactorings 

Code-Imp 
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Conclusion 

 The problem with current code improvement tools 
 Perform surface, rather than radical, design exploration 
 Difficulties in preserving user understandability 

 Multi-level Automated Refactoring using Design Exploration 
 Expand refactoring approach to perform radical, instead of surface, design exploration 

 Address the problem of comprehension of the refactored program 

 Progress to date 
 An automated search-based refactoring tool called Code-Imp 

 A preliminary experiment that shows the capability and the potential of  the approach 

 

  The presentation covered:  
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Thank You! 
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How to explain the new design? 

 Reduce complexity using software visualization 

 Highlight design key points 
 Structure 

 History 
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Code-Imp Architecture 
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 Design-level Refactorings 
 
 Implemented Refactorings:  

 Method-level Refactorings 
 Push Down Method 

 Pull Up Method 

 Decrease/Increase Method Visibility 

 Field-level Refactorings 
 Push Down Field 

 Pull Up Field 

 Decrease/Increase Field Visibility 

 Class-level Refactorings 
 Extract Hierarchy 

 Collapse Hierarchy 

 Make Superclass Abstract 

 Make Superclass Concrete 

 Replace Delegation with Inheritance 

 Replace Inheritance with Delegation 
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Implemented Metrics 
 


