THE IRISH SOFTWARE
l e r' ENGINEERING
RESEARCH CENTRE

Iman Hemati Moghadam
Supervisor: Mel O Cinnéide Q

Agenda

" Introduction

" Motivations for a Multi-level Refactoring Approach
" Proposed Approach in Detail

® Research Questions

® Key Results to Date

® Conclusion

SSBSE 2011 2

Introduction

®" Primary Goal

= Improve software quality as expressed by a metrics suite using automated refactoring

® Approach

= Consider OO design improvement as a combinatorial optimization problem
= Use search-based refactoring to direct the refactoring process

" Code-Imp
= Combinatorial Optimisation for Design Improvement
= Refactors automatically Java source code based on a metrics suite

SSBSE 2011 3

Key results in previous work: Is automated improvement possible?

® Can search-based refactoring improve program design?

= QMOOD metrics suite was used as fitness function
= Understandability
= Flexibility
= Reusability

" Results:
= Significant improvement in Understandability

= Minimal improvement in Flexibility

= Reusability function proved unsuitable
= Resulted a large number of featureless classes

SSBSE 2011 4

Key results in previous work : Which search technique works best?

®" Which search technique is more effective?
= Multiple-ascent hill-climbing
= Genetic algorithm
= Simulated annealing

® Results:

* Multiple-ascent hill-climbing performed the best overall
= Performed surface, rather than radical, design exploration

= Single best design improvement was achieved using simulated annealing
= |llustrates that more radical design improvement is probably possible

SSBSE 2011 5

Motivations

SSBSE 2011 6

Motivation for Multi-level Refactoring

" Drawbacks of Source-to-Source transformation

= All low-level code details must be handled

= Refactoring steps too small to effect major design change

" Both happen because of detailed information at source-code level

® Design-level refactoring can be used for a deeper and faster design exploration
" However, code refactoring needs to be applied manually

® Cannot be used in an Agile context

Motivation 1:
Perfoming a radical and faster design exploration rather than minor improvements

SSBSE 2011 7

Motivation for Multi-level Refactoring

® Using a fully automated refactoring tool

= |tis possible to apply many refactorings without programmer intervention

= Programmer only sees the end result of the refactoring process

" Difficulties in preserving programmer understandability

Motivation 2:
Improve User Understandability of the refactored program

SSBSE 2011 8

Proposed Approach

SSBSE 2011 9

Multi-level Automated Refactoring

Design
Exploration

S e A ;20 pl

. . Design Level
Metrics Suite |- Sourcé'éaaé' """""""

Design Model Desired Design

Level

Refactored J
Program

Full
Refactoring

¢

i Original
: Program

SSBSE 2011

Research Questions

SSBSE 2011 11

How to guide the search process efficiently ?

" The code refactoring process is informed by
= The metrics suite
= The user-selected design
= The series of transformations that led to this program design

®" How this combination is best used to guide the search is an
open question

¥ What is the best trade-off when the series of transformations
applied to the design

= Degrade the quality of the source code?
= Cannot be mapped easily to the existing source code?
= Cannot be executed because of failing pre-conditions?

SSBSE 2011 12

How to select suitable metrics?

® How metrics including in metrics suite should be selected?
= Off-the-shelf metrics suite (e.g. QMOOD, MOQD, etc.)
= Tailored one

" Arecent experiment we performed to explore the metrics
relationship

= Five cohesion metrics were compared
= LSCC, TCC, SCOM, CC, and LCOMS5

= Some of the metrics were strongly in conflict with each other
= E.g. LSCCand TCC

® |s the same metrics suite appropriate for both levels?

SSBSE 2011 13

A Preliminary Experiment

SSBSE 2011 14

A preliminary experiment

®" How precisely can a source program be refactored based on a
desired design?

" Implemented Algorithm
= A well-designed software system (JHotDraw) is randomly refactored
= Two designs are compared using a design differencing tool (UMLDiff)

= Applied changes are categorized as refactoring instances

= Rebuild the original system based on the recovered refactorings

= The initial program design is the desired design

SSBSE 2011 15

Categorize detected changes as refactoring instances

Java Source Code

I
: Fact Extractor

| [Extracts two UMI class model from
I two versions of the program.

Extracted Models

UmMLbiff 1 1
>~ [Compares two extracted class modelq .- . a
Getthe refactored code ? |1, jdentifies applied changes. N y

Detected Changes

Refactoring Extractor

[dentifies instances of applied refactorings
using a suite of predefined queries.

Detected Refactorings

SSBSE 2011 16

JDEVAN

Rebuild the original system based on the recovered refactorings

Code-Imp
\ 4

Preprocessing
Finds refactorings

Parser
Extracts the initial abstract syntax tree
from the source code.

mapped easily to
existing source code
& replaces them with
possible ones.

Apply Refactoring
Applies the refactoring
& updates the AST,
Roll backs the

|
|
|
|
|
I
: that cannot be
|
|
|
I
|
|

| . .

| | Precondition Checking 1‘efaCF01‘1ng if does not
| [Selects a refactoring & satisfies preconditions.
: checks itsf 1,

| |[preconditions. If all :| Prettv Printer I

| [preconditions arel IThe AST is pretty printed to the:

| lokay, apply the l: source code files. |

I frefactoring. |

L= - |

Refactored
Source Code

SSBSE 2011 17

Conclusion

®" The presentation covered:

" The problem with current code improvement tools

= Perform surface, rather than radical, design exploration
= Difficulties in preserving user understandability

® Multi-level Automated Refactoring using Design Exploration
= Expand refactoring approach to perform radical, instead of surface, design exploration
= Address the problem of comprehension of the refactored program

" Progress to date
= An automated search-based refactoring tool called Code-Imp
= A preliminary experiment that shows the capability and the potential of the approach

SSBSE 2011 18

Thank You!

SSBSE 2011

How to explain the new design?

® Highlight design key points
® Structure
® History

® Reduce complexity using software visualization
T o
|||l I" ||||||||||| II|II |'-| |

|| ||T|rl u-l

SSBSE 2011 20

Code-Imp Architecture

‘ Refactoring | \

Apply
Refactoring Reiasfoiing
Process Eann——)> ‘ i

Metrics
Suite /

Evaluate

Vlodel 1

Detailed View of Pre-Conc.lltlon P -~ MOde.l
Refactaring Checking Evaluation
Process Rollback

C id Updat
Refactoriog / / peiect / Model
Candidate ~ B

Repea ted

Refac tor mg

Initial Refactored
I ASTs l ASTs

I Parser I I Pretty Printer I

1 !

Original Refactored
Source Code Source Code

SSBSE 2011 21

Design-level Refactorings

" Implemented Refactorings:

= Method-level Refactorings
* Push Down Method
= Pull Up Method
= Decrease/Increase Method Visibility

= Field-level Refactorings

= Push Down Field
= Pull Up Field
= Decrease/Increase Field Visibility

= (Class-level Refactorings

= Extract Hierarchy

= Collapse Hierarchy

= Make Superclass Abstract

= Make Superclass Concrete

= Replace Delegation with Inheritance
= Replace Inheritance with Delegation

SSBSE 2011 22

Implemented Metrics

SSBSE 2011

No. Cohesion Metrics ACTONY 1T
1 |Low-level Similarity Class Cohesion|LSCC
2 | Similarity Class Cohesion SCC
3 |Normahzed Hamming Distance NHD
4 |Tight Class Cohesion TCC
5 |Loose Class Cohesion LCC
6 |Lack of Cohesion in Methodsl LCOM!1
7 |Lack of Cohesion in Methods2 LCOM2
8, 9| Lack of Cohesion in Methods3 & 4 |LCOMS3 & 4
10 |Lack of Cohesion in Methodsh LCOMS5
11 |Information-Flow-Based Cohesion |ICH
12 |Cohesion Among Method of Class |CAMC
13 | Class Cohesion CC
14 |Sensitive Class Cohesion Metrics SCOM
Coupling Metrics
15 |Response for Class RFC
16 |Direct Class Coupling DCC
17 |Data Abstraction Coupling DAC
18 |Coupling Factor COF
19 |Coupling Between Objects CBO
20 |Instability Instability
21 |Information-Flow-Based Coupling |ICP
22 |Non-Inheritance ICP NICP
23 |Inheritance ICP [ICP
24 | Message Passing Coupling MPC
Other Metrics
25 |Class Interface Size CISs
26 |Number of Methods NOM
27 |Data Access Metric DAM
28 |Design Size in Classes DSC
29 |Number of Polymorphic Methods |NOP
30 [Average Number of Ancestors ANA
31 [Number Of Hierarchies NOH

23

